Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Blood ; 139(17): 2653-2665, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35231105

RESUMEN

Increasing evidence links metabolism, protein synthesis, and growth signaling to impairments in the function of hematopoietic stem and progenitor cells (HSPCs) during aging. The Lin28b/Hmga2 pathway controls tissue development, and the postnatal downregulation of this pathway limits the self-renewal of adult vs fetal hematopoietic stem cells (HSCs). Igf2bp2 is an RNA binding protein downstream of Lin28b/Hmga2, which regulates messenger RNA stability and translation. The role of Igf2bp2 in HSC aging is unknown. In this study, an analysis of wild-type and Igf2bp2 knockout mice showed that Igf2bp2 regulates oxidative metabolism in HSPCs and the expression of metabolism, protein synthesis, and stemness-related genes in HSCs of young mice. Interestingly, Igf2bp2 expression and function strongly declined in aging HSCs. In young mice, Igf2bp2 deletion mimicked aging-related changes in HSCs, including changes in Igf2bp2 target gene expression and impairment of colony formation and repopulation capacity. In aged mice, Igf2bp2 gene status had no effect on these parameters in HSCs. Unexpectedly, Igf2bp2-deficient mice exhibited an amelioration of the aging-associated increase in HSCs and myeloid-skewed differentiation. The results suggest that Igf2bp2 controls mitochondrial metabolism, protein synthesis, growth, and stemness of young HSCs, which is necessary for full HSC function during young adult age. However, Igf2bp2 gene function is lost during aging, and it appears to contribute to HSC aging in 2 ways: the aging-related loss of Igf2bp2 gene function impairs the growth and repopulation capacity of aging HSCs, and the activity of Igf2bp2 at a young age contributes to aging-associated HSC expansion and myeloid skewing.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas , Proteínas de Unión al ARN , Envejecimiento/genética , Animales , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Sci Rep ; 11(1): 7951, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846452

RESUMEN

Large amounts of ultra-high molecular weight hyaluronan (HA) have been described as the main cause of cancer resistance in naked mole-rats (Heterocephalus glaber, NMR). Our work examined HA metabolism in these rodents more closely. HA was localized and quantified using HA binding proteins. Its molecular weight was determined using size exclusion chromatography and gel electrophoresis, HA family gene expression using RNAseq analysis, and hyaluronidase activity using zymography. Guinea pigs (Cavia porcellus) and mice (Mus musculus) were used as controls for some experiments. We found that HA localization was similar in NMR, guinea pig, and mouse tissues but NMR had larger amounts and higher molecular weight (maximum, around 2.5 MDa) of HA in serum and almost all tissues tested. We could not find ultra-high molecular weight HA (≥ 4 MDa) in NMR samples, in contrast to previous descriptions. Hyaluronidase-1 had lower expression and activity in NMR than mouse lymph nodes. RNAseq results showed that, among HA family genes, Tnfaip6 and hyaluronidase-3 (Hyal3) were systematically overexpressed in NMR tissues. In conclusion, NMR samples, contrary to expectations, do not harbor ultra-high molecular weight HA, although its amount and average molecular weight are higher in NMR than in guinea pig tissues and serum. Although hyaluronidase expression and activity are lower in NMR than mouse lymph nodes, this not sufficient to explain the presence of high molecular weight HA. A different activity of the NMR HA synthases remains possible. These characteristics, together with extremely high Hyal3 and Tnfaip6 expression, may provide the NMR with a bespoke, and perhaps protective, HA metabolism.


Asunto(s)
Ácido Hialurónico/sangre , Ratas Topo/sangre , Especificidad de Órganos , Animales , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Receptores de Hialuranos/metabolismo , Hialuronoglucosaminidasa/metabolismo , Ganglios Linfáticos/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Peso Molecular
3.
Elife ; 102021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724179

RESUMEN

Sexual activity and/or reproduction are associated with a doubling of life expectancy in the long-lived rodent genus Fukomys. To investigate the molecular mechanisms underlying this phenomenon, we analyzed 636 RNA-seq samples across 15 tissues. This analysis suggests that changes in the regulation of the hypothalamic-pituitary-adrenal stress axis play a key role regarding the extended life expectancy of reproductive vs. non-reproductive mole-rats. This is substantiated by a corpus of independent evidence. In accordance with previous studies, the up-regulation of the proteasome and so-called 'anti-aging molecules', for example, dehydroepiandrosterone, is linked with enhanced lifespan. On the other hand, several of our results are not consistent with knowledge about aging of short-lived model organisms. For example, we found the up-regulation of the insulin-like growth factor 1/growth hormone axis and several other anabolic processes to be compatible with a considerable lifespan prolongation. These contradictions question the extent to which findings from short-lived species can be transferred to longer-lived ones.


Asunto(s)
Sistema Hipotálamo-Hipofisario/metabolismo , Longevidad/genética , Sistema Hipófiso-Suprarrenal/metabolismo , Reproducción , Animales , Deshidroepiandrosterona/farmacología , Femenino , Expresión Génica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratas Topo/genética , Ratas Topo/metabolismo , Conducta Sexual Animal , Estrés Psicológico/metabolismo
4.
EMBO Rep ; 22(1): e49328, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33300287

RESUMEN

Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para-ortholog, Smed-exoc3, abrogates in vivo tissue homeostasis and regeneration-processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2-deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)-a known inducer of LD formation. Smed-exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl-L-carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2-deficient ESCs and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.


Asunto(s)
Metabolismo de los Lípidos , Planarias , Animales , Diferenciación Celular , Homeostasis , Metabolismo de los Lípidos/genética , Ratones , Planarias/genética , Interferencia de ARN
5.
Elife ; 82019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31287058

RESUMEN

Ruby et al. recently analyzed historical lifespan data on more than 3200 naked mole-rats, collected over a total observation period of about 38 years (Ruby et al., 2018). They report that mortality hazards do not seem to increase across the full range of their so-far-observed lifespan, and conclude that this defiance of Gompertz's law 'uniquely identifies the naked mole-rat as a non-aging mammal'. Here, we explain why we believe this conclusion is premature.


Asunto(s)
Longevidad , Ratas Topo , Animales , Mamíferos
6.
Nucleic Acids Res ; 47(1): 134-151, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30329080

RESUMEN

Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.


Asunto(s)
Cilios/genética , ADN Helicasas/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Transcripción Genética , Animales , Cilios/patología , Ciliopatías/genética , Ciliopatías/patología , Humanos , Mitosis/genética , Sitio de Iniciación de la Transcripción , Pez Cebra/genética
7.
Aging (Albany NY) ; 10(12): 3938-3956, 2018 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-30557854

RESUMEN

Many aging-associated physiological changes are known to occur in short- and long-lived species with different trajectories. Emerging evidence suggests that numerous life history trait differences between species are based on interspecies variations in gene expression. Little information is available, however, about differences in transcriptome changes during aging between mammals with diverging lifespans. For this reason, we studied the transcriptomes of five tissue types and two age cohorts of two similarly sized rodent species with very different lifespans: laboratory rats (Rattus norvegicus) and giant mole-rats (Fukomys mechowii), with maximum lifespans of 3.8 and more than 20 years, respectively. Our findings show that giant mole-rats exhibit higher gene expression stability during aging than rats. Although well-known aging signatures were detected in all tissue types of rats, they were found in only one tissue type of giant mole-rats. Furthermore, many differentially expressed genes that were found in both species were regulated in opposite directions during aging. This suggests that expression changes which cause aging in short-lived species are counteracted in long-lived species. Taken together, we conclude that expression stability in giant mole rats (and potentially in African mole-rats in general) may be one key factor for their long and healthy life.


Asunto(s)
Envejecimiento/fisiología , Regulación de la Expresión Génica/fisiología , Ratas Topo/fisiología , Animales , Ratas
8.
BMC Biol ; 16(1): 82, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30068331

RESUMEN

BACKGROUND: Mammals display a wide range of variation in their lifespan. Investigating the molecular networks that distinguish long- from short-lived species has proven useful to identify determinants of longevity. Here, we compared the livers of young and old long-lived naked mole-rats (NMRs) and the phylogenetically closely related, shorter-lived, guinea pigs using an integrated omics approach. RESULTS: We found that NMR livers display a unique expression pattern of mitochondrial proteins that results in distinct metabolic features of their mitochondria. For instance, we observed a generally reduced respiration rate associated with lower protein levels of respiratory chain components, particularly complex I, and increased capacity to utilize fatty acids. Interestingly, we show that the same molecular networks are affected during aging in both NMRs and humans, supporting a direct link to the extraordinary longevity of both species. Finally, we identified a novel detoxification pathway linked to longevity and validated it experimentally in the nematode Caenorhabditis elegans. CONCLUSIONS: Our work demonstrates the benefits of integrating proteomic and transcriptomic data to perform cross-species comparisons of longevity-associated networks. Using a multispecies approach, we show at the molecular level that livers of NMRs display progressive age-dependent changes that recapitulate typical signatures of aging despite the negligible senescence and extraordinary longevity of these rodents.


Asunto(s)
Envejecimiento , Hígado/metabolismo , Longevidad , Ratas Topo/fisiología , Proteoma , Adulto , Anciano , Anciano de 80 o más Años , Animales , Caenorhabditis elegans/fisiología , Cobayas , Humanos , Masculino , Persona de Mediana Edad , Especificidad de la Especie
9.
BMC Biol ; 16(1): 77, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30068345

RESUMEN

BACKGROUND: Naked mole-rats (NMRs) are eusocially organized in colonies. Although breeders carry the additional metabolic load of reproduction, they are extremely long-lived and remain fertile throughout their lifespan. This phenomenon contrasts the disposable soma theory of aging stating that organisms can invest their resources either in somatic maintenance, enabling a longer lifespan, or in reproduction, at the cost of longevity. Here, we present a comparative transcriptome analysis of breeders vs. non-breeders of the eusocial, long-lived NMR vs. the polygynous and shorter-lived guinea pig (GP). RESULTS: Comparative transcriptome analysis of tissue samples from ten organs showed, in contrast to GPs, low levels of differentiation between sexes in adult NMR non-breeders. After transition into breeders, NMR transcriptomes are markedly sex-specific, show pronounced feedback signaling via gonadal steroids, and have similarities to reproductive phenotypes in African cichlid fish, which also exhibit social status changes between dominant and subordinate phenotypes. Further, NMRs show functional enrichment of status-related expression differences associated with aging. Lipid metabolism and oxidative phosphorylation-molecular networks known to be linked to aging-were identified among most affected gene sets. Remarkably and in contrast to GPs, transcriptome patterns associated with longevity are reinforced in NMR breeders. CONCLUSION: Our results provide comprehensive and unbiased molecular insights into interspecies differences between NMRs and GPs, both in sexual maturation and in the impact of reproduction on longevity. We present molecular evidence that sexual maturation in NMRs is socially suppressed. In agreement with evolutionary theories of aging in eusocial organisms, we have identified transcriptome patterns in NMR breeders that-in contrast to the disposable soma theory of aging-may slow down aging rates and potentially contribute to their exceptional long life- and healthspan.


Asunto(s)
Envejecimiento/genética , Ratas Topo/genética , Reproducción/genética , Maduración Sexual/genética , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Cobayas , Análisis de Secuencia de ARN/métodos
10.
Sci Rep ; 8(1): 4337, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531249

RESUMEN

Mammals usually possess a majority of medium-wavelength sensitive (M-) and a minority of short-wavelength sensitive (S-) opsins in the retina, enabling dichromatic vision. Unexpectedly, subterranean rodents from the genus Fukomys exhibit an S-opsin majority, which is exceptional among mammals, albeit with no apparent adaptive value. Because thyroid hormones (THs) are pivotal for M-opsin expression and metabolic rate regulation, we have, for the first time, manipulated TH levels in the Ansell's mole-rat (Fukomys anselli) using osmotic pumps. In Ansell's mole-rats, the TH thyroxine (T4) is naturally low, likely as an adaptation to the harsh subterranean ecological conditions by keeping resting metabolic rate (RMR) low. We measured gene expression levels in the eye, RMR, and body mass (BM) in TH-treated animals. T4 treatment increased both, S- and M-opsin expression, albeit M-opsin expression at a higher degree. However, this plasticity was only given in animals up to approximately 2.5 years. Mass-specific RMR was not affected following T4 treatment, although BM decreased. Furthermore, the T4 inactivation rate is naturally higher in F. anselli compared to laboratory rodents. This is the first experimental evidence that the S-opsin majority in Ansell's mole-rats is a side effect of low T4, which is downregulated to keep RMR low.


Asunto(s)
Metabolismo Basal/efectos de los fármacos , Opsinas de los Conos/metabolismo , Ratas Topo/metabolismo , Retina/metabolismo , Tiroxina/sangre , Tiroxina/deficiencia , Animales , Opsinas de los Conos/genética , Femenino , Masculino , Ratas Topo/sangre
11.
PLoS Genet ; 14(3): e1007272, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29570707

RESUMEN

The genetics of lifespan determination is poorly understood. Most research has been done on short-lived animals and it is unclear if these insights can be transferred to long-lived mammals like humans. Some African mole-rats (Bathyergidae) have life expectancies that are multiple times higher than similar sized and phylogenetically closely related rodents. To gain new insights into genetic mechanisms determining mammalian lifespans, we obtained genomic and transcriptomic data from 17 rodent species and scanned eleven evolutionary branches associated with the evolution of enhanced longevity for positively selected genes (PSGs). Indicating relevance for aging, the set of 250 identified PSGs showed in liver of long-lived naked mole-rats and short-lived rats an expression pattern that fits the antagonistic pleiotropy theory of aging. Moreover, we found the PSGs to be enriched for genes known to be related to aging. Among these enrichments were "cellular respiration" and "metal ion homeostasis", as well as functional terms associated with processes regulated by the mTOR pathway: translation, autophagy and inflammation. Remarkably, among PSGs are RHEB, a regulator of mTOR, and IGF1, both central components of aging-relevant pathways, as well as genes yet unknown to be aging-associated but representing convincing functional candidates, e.g. RHEBL1, AMHR2, PSMG1 and AGER. Exemplary protein homology modeling suggests functional consequences for amino acid changes under positive selection. Therefore, we conclude that our results provide a meaningful resource for follow-up studies to mechanistically link identified genes and amino acids under positive selection to aging and lifespan determination.


Asunto(s)
Longevidad/genética , Roedores/genética , Selección Genética , Animales , Genoma , Homeostasis , Transporte Iónico , Estrés Oxidativo , Especificidad de la Especie , Transcriptoma
12.
Nucleic Acids Res ; 45(11): e100, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28334822

RESUMEN

Many comparative genomics studies aim to find the genetic basis of species-specific phenotypic traits. A prevailing strategy is to search genome-wide for genes that evolved under positive selection based on the non-synonymous to synonymous substitution ratio. However, incongruent results largely due to high false positive rates indicate the need for standardization of quality criteria and software tools. Main challenges are the ortholog and isoform assignment, the high sensitivity of the statistical models to alignment errors and the imperative to parallelize large parts of the software. We developed the software tool PosiGene that (i) detects positively selected genes (PSGs) on genome-scale, (ii) allows analysis of specific evolutionary branches, (iii) can be used in arbitrary species contexts and (iv) offers visualization of the results for further manual validation and biological interpretation. We exemplify PosiGene's performance using simulated and real data. In the simulated data approach, we determined a false positive rate <1%. With real data, we found that 68.4% of the PSGs detected by PosiGene, were shared by at least one previous study that used the same set of species. PosiGene is a user-friendly, reliable tool for reproducible genome-wide identification of PSGs and freely available at https://github.com/gengit/PosiGene.


Asunto(s)
Selección Genética , Análisis de Secuencia de ADN , Programas Informáticos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Genoma , Humanos , Filogenia
13.
Front Cell Neurosci ; 10: 205, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27616981

RESUMEN

The thyroid hormones (TH) triiodothyronine (T3) and its prohormone thyroxine (T4) are crucial for retinal development and function, and increasing evidence points at TH dysregulation as a cause for retinal degenerative diseases. Thus, precise regulation of retinal TH supply is required for proper retinal function, but knowledge on these mechanisms is still fragmentary. Several transmembrane transporters have been described as key regulators of TH availability in target tissues of which the monocarboxylate transporter 8 (MCT8), a high affinity transporter for T4 and T3, plays an essential role in the central nervous system. Moreover, in the embryonic chicken retina, MCT8 is highly expressed, but the postnatal availability of MCT8 in the mammalian retina was not reported to date. In the present study, spatiotemporal retinal MCT8 availability was examined in mice of different age. For this purpose, we quantified expression levels of Mct8 via Real-Time Reverse-Transcriptase PCR in mouse eyecups (C57BL/6) of juvenile and adult age groups. Additionally, age-dependent MCT8 protein levels were quantified via Western blotting and localized via immunofluorescence confocal microscopy. While no difference in Mct8 expression levels could be detected between age groups, MCT8 protein levels in juvenile animals were about two times higher than in adult animals based on Western blot analyses. Immunohistochemical analyses showed that MCT8 immunoreactivity in the eyecup was restricted to the retina and the retinal pigment epithelium. In juvenile mice, MCT8 was broadly observed along the apical membrane of the retinal pigment epithelium, tightly surrounding photoreceptor outer segments. Distinct immunopositive staining was also detected in the inner nuclear layer and the ganglion cell layer. However, in adult specimens, immunoreactivity visibly declined in all layers, which was in line with Western blot analyses. Since MCT8 was abundantly present in juvenile and about twofold lower in adult retinae, our findings suggest a pivotal role of MCT8 especially during postnatal maturation. The present study provides novel insights into age-dependent retinal TH supply, which might help to understand different aspects regarding retinal development, function, and disorders.

14.
Redox Biol ; 8: 192-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26803480

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-induced longevity models. However, blood sulfide concentration of naturally long-lived species is not known. Here we measured blood sulfide in the long-lived naked mole-rat and five other mammalian species considerably differing in lifespan and found a negative correlation between blood sulfide and maximum longevity residual. In addition, we show that the naked mole-rat cystathionine ß-synthase (CBS), an enzyme whose activity in the liver significantly contributes to systemic sulfide levels, has lower activity in the liver and is activated to a higher degree by S-adenosylmethionine compared to other species. These results add complexity to the understanding of the role of H2S in aging and call for detailed research on naked mole-rat transsulfuration.


Asunto(s)
Envejecimiento/sangre , Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/sangre , S-Adenosilmetionina/metabolismo , Envejecimiento/patología , Animales , Cistationina betasintasa/genética , Dieta , Hígado/enzimología , Longevidad/genética , Metionina/metabolismo , Ratas Topo , Ratas
15.
BMC Genomics ; 17: 54, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26763976

RESUMEN

BACKGROUND: Advances in second-generation sequencing of RNA made a near-complete characterization of transcriptomes affordable. However, the reconstruction of full-length mRNAs via de novo RNA-seq assembly is still difficult due to the complexity of eukaryote transcriptomes with highly similar paralogs and multiple alternative splice variants. Here, we present FRAMA, a genome-independent annotation tool for de novo mRNA assemblies that addresses several post-assembly tasks, such as reduction of contig redundancy, ortholog assignment, correction of misassembled transcripts, scaffolding of fragmented transcripts and coding sequence identification. RESULTS: We applied FRAMA to assemble and annotate the transcriptome of the naked mole-rat and assess the quality of the obtained compilation of transcripts with the aid of publicy available naked mole-rat gene annotations. Based on a de novo transcriptome assembly (Trinity), FRAMA annotated 21,984 naked mole-rat mRNAs (12,100 full-length CDSs), corresponding to 16,887 genes. The scaffolding of 3488 genes increased the median sequence information 1.27-fold. In total, FRAMA detected and corrected 4774 misassembled genes, which were predominantly caused by fusion of genes. A comparison with three different sources of naked mole-rat transcripts reveals that FRAMA's gene models are better supported by RNA-seq data than any other transcript set. Further, our results demonstrate the competitiveness of FRAMA to state of the art genome-based transcript reconstruction approaches. CONCLUSION: FRAMA realizes the de novo construction of a low-redundant transcript catalog for eukaryotes, including the extension and refinement of transcripts. Thereby, results delivered by FRAMA provide the basis for comprehensive downstream analyses like gene expression studies or comparative transcriptomics. FRAMA is available at https://github.com/gengit/FRAMA .


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero/genética , Programas Informáticos , Transcriptoma/genética , Animales , Biología Computacional/instrumentación , Genoma , Ratas Topo/genética , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética
16.
Cell ; 163(6): 1527-38, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638077

RESUMEN

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb).


Asunto(s)
Evolución Biológica , Peces Killi/genética , Cromosomas Sexuales , Envejecimiento , Animales , Femenino , Genoma , Peces Killi/fisiología , Masculino , Datos de Secuencia Molecular , Procesos de Determinación del Sexo
17.
PLoS One ; 10(6): e0130470, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26103567

RESUMEN

BACKGROUND: The naked mole-rat (NMR) is a long-lived and cancer resistant species. Identification of potential anti-cancer and age related mechanisms is of great interest and makes this species eminent to investigate anti-cancer strategies and understand aging mechanisms. Since it is known that the NMR expresses higher liver mRNA-levels of alpha 2-macroglobulin than mice, nothing is known about its structure, functionality or expression level in the NMR compared to the human A2M. RESULTS: Here we show a comprehensive analysis of NMR- and human plasma-A2M, showing a different prediction in glycosylation of NMR-A2M, which results in a higher molecular weight compared to human A2M. Additionally, we found a higher concentration of A2M (8.3±0.44 mg/mL vs. and 4.4±0.20 mg/mL) and a lower total plasma protein content (38.7±1.79 mg/mL vs. 61.7±3.20 mg/mL) in NMR compared to human. NMR-A2M can be transformed by methylamine and trypsin resulting in a conformational change similar to human A2M. NMR-A2M is detectable by a polyclonal antibody against human A2M. Determination of tryptic and anti-tryptic activity of NMR and human plasma revealed a higher anti-tryptic activity of the NMR plasma. On the other hand, less proteolytic activity was found in NMR plasma compared to human plasma. CONCLUSION: We found transformed NMR-A2M binding to its specific receptor LRP1. We could demonstrate lower protein expression of LRP1 in the NMR liver tissue compared to human but higher expression of A2M. This was accompanied by a higher EpCAM protein expression as central adhesion molecule in cancer progression. NMR-plasma was capable to increase the adhesion in human fibroblast in vitro most probably by increasing CD29 protein expression. This is the first report, demonstrating similarities as well as distinct differences between A2M in NMR and human plasma. This might be directly linked to the intriguing phenotype of the NMR and suggests that A2M might probably play an important role in anti-cancer and the anti-aging mechanisms in the NMR.


Asunto(s)
Neoplasias/sangre , alfa-Macroglobulinas/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Humanos , Ratas Topo , Filogenia
18.
RNA Biol ; 12(2): 115-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826565

RESUMEN

Tandem alternative splice sites (TASS) form a defined class of alternative splicing and give rise to mRNA insertion/deletion variants with only small size differences. Previous work has confirmed evolutionary conservation of TASS elements while many cases show only low tissue specificity of isoform ratios. We pinpoint stochasticity and noise as important methodological issues for the dissection of TASS isoform patterns. Resolving such uncertainties, a recent report showed regulation in a cell culture system, with shifts of alternative splicing isoform ratios dependent on cell density. This novel type of regulation affects not only multiple TASS isoforms, but also other alternative splicing classes, in a concerted manner. Here, we discuss how specific regulatory network architectures may be realized through the novel regulation type and highlight the role of differential isoform functions as a key step in order to better understand the functional role of TASS.


Asunto(s)
Empalme Alternativo , Isoformas de Proteínas/genética , Sitios de Empalme de ARN , ARN Mensajero/genética , Animales , Células Cultivadas , Exones , Humanos , Intrones , Mamíferos , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Tamaño de la Muestra , Empalmosomas/química , Empalmosomas/metabolismo , Procesos Estocásticos
19.
PLoS One ; 9(11): e113698, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25409169

RESUMEN

Ansell's mole-rats (Fukomys anselli) are subterranean, long-lived rodents, which live in eusocial families, where the maximum lifespan of breeders is twice as long as that of non-breeders. Their metabolic rate is significantly lower than expected based on allometry, and their retinae show a high density of S-cone opsins. Both features may indicate naturally low thyroid hormone levels. In the present study, we sequenced several major components of the thyroid hormone pathways and analyzed free and total thyroxine and triiodothyronine in serum samples of breeding and non-breeding F. anselli to examine whether a) their thyroid hormone system shows any peculiarities on the genetic level, b) these animals have lower hormone levels compared to euthyroid rodents (rats and guinea pigs), and c) reproductive status, lifespan and free hormone levels are correlated. Genetic analyses confirmed that Ansell's mole-rats have a conserved thyroid hormone system as known from other mammalian species. Interspecific comparisons revealed that free thyroxine levels of F. anselli were about ten times lower than of guinea pigs and rats, whereas the free triiodothyronine levels, the main biologically active form, did not differ significantly amongst species. The resulting fT4:fT3 ratio is unusual for a mammal and potentially represents a case of natural hypothyroxinemia. Comparisons with total thyroxine levels suggest that mole-rats seem to possess two distinct mechanisms that work hand in hand to downregulate fT4 levels reliably. We could not find any correlation between free hormone levels and reproductive status, gender or weight. Free thyroxine may slightly increase with age, based on sub-significant evidence. Hence, thyroid hormones do not seem to explain the different ageing rates of breeders and non-breeders. Further research is required to investigate the regulatory mechanisms responsible for the unusual proportion of free thyroxine and free triiodothyronine.


Asunto(s)
Envejecimiento , Tiroxina/sangre , Triyodotironina/sangre , Secuencia de Aminoácidos , Animales , Femenino , Cobayas , Técnicas para Inmunoenzimas , Masculino , Ratas Topo , Datos de Secuencia Molecular , Ratas , Ratas Wistar , Alineación de Secuencia , Receptores alfa de Hormona Tiroidea/química , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/química , Receptores beta de Hormona Tiroidea/metabolismo
20.
Nucleic Acids Res ; 42(14): 8895-904, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25030907

RESUMEN

Thousands of tandem alternative splice sites (TASS) give rise to mRNA insertion/deletion variants with small size differences. Recent work has concentrated on the question of biological relevance in general, and the physiological regulation of TASS in particular. We have quantitatively studied 11 representative TASS cases in comparison to one mutually exclusive exon case and two cassette exons (CEs) using a panel of human and mouse tissues, as well as cultured cell lines. Tissues show small but significant differences in TASS isoform ratios, with a variance 4- to 20-fold lower than seen for CEs. Remarkably, in cultured cells, all studied alternative splicing (AS) cases showed a cell-density-dependent shift of isoform ratios with similar time series profiles. A respective genome-wide co-regulation of TASS splicing was shown by next-generation mRNA sequencing data. Moreover, data from human and mouse organs indicate that this co-regulation of TASS occurs in vivo, with brain showing the strongest difference to other organs. Together, the results indicate a physiological AS regulation mechanism that functions almost independently from the splice site context and sequence.


Asunto(s)
Empalme Alternativo , Exones , Sitios de Empalme de ARN , Animales , Línea Celular , Genoma Humano , Humanos , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...